歡迎光臨源葉生物,登錄 | 注冊 |
當前位置: 首頁 > 生化試劑 > 植物提取物 > 兒茶素(類)

瀏覽歷史

S18163

兒茶素(類)

源葉 BR,90%
  • 英文名:
  • Catechins
  • 別名:
  • 兒茶素
  • CAS號:
  • 989-51-5
  • 分子式:
  • C22H18O11
  • 分子量:
  • 458.37
  • MDL:
  • MFCD00150865
  • 核磁/質譜:
貨號產品規格市場價(RMB)您的折扣價(RMB)庫存(上海) 庫存(北京) 庫存(武漢) 庫存(南京) 數量計量單位 加入購物車...
S18163-5g BR,90% ¥200.00元 ¥160.00元 >10 2 0 3 EA 加入購物車
S18163-25g BR,90% ¥600.00元 ¥550.00元 4 3 0 0 EA 加入購物車
大包裝詢價

提交您的電話號碼,到貨后將短信提示。
提交

產品介紹

參考文獻

質檢證書(COA)

摩爾濃度計算器

相關產品

  • 熔點: 212℃
  • 溶解性: Soluble  in  ethanol  (~20  mg/ml),  dimethyl  formamide  (~20  mg/ml),  DMSO  (~20  mg/ml),  water  (>5  mg/ml),  DMF,  PBS  pH  7.2,  and  Methano
  • 儲存條件: 2-8℃,避光
  • 用途: An inhibitor of Bcl-2 and NOS2
  • 注意:部分產品我司僅能提供部分信息,我司不保證所提供信息的權威性,僅供客戶參考交流研究之用。
  • 1. 鈕婧歆 郭晶 郭青 等. EGCG對富亮氨酸重復激酶2活性的影響及其作用機制[J]. 江蘇大學學報(醫學版) 2018 v.28;No.143(05):34-39.
  • 2. 北拉 蒲首丞 孫梅好. HPLC-DAD測定不同時期安吉白茶中EGCG的含量[J]. 中國農業信息 2016(6):57-57.
  • 3. 蒲首丞. HPLC-DAD測定大茶樹和小茶樹的西湖龍井茶中EGCG的含量[J]. 安徽農業科學 v.42;No.445(12):3714-3715.
  • 4. 李書靈 陸玨秀 余艾虹 等. 兒茶素對家兔離體小腸平滑肌收縮功能和機制的實驗研究[J]. 世界最新醫學信息文摘 2018 v.18(28):168-169.
  • 5. 孔敏, 周芳, 黨秀靜,等. 脊髓Toll樣受體4在慢性瘙癢中的作用研究[J]. 重慶醫學, 2013, 42(9):961-963.
  • 6. 何帥, 王明友, 趙季軍,等. 表沒食子兒茶素沒食子酸酯預防高脂飲食誘導的大鼠肥胖[J]. 西部醫學, 2020, 032(004):496-499,504.
  • 7. 孫陶利 周芫宇 黎綾. EGCG-β-LG納米粒的制備及體外穩定性研究[J]. 生物化工 2020 006(001):35-37 54.
  • 8. 陳斌輝, 呂圭源, 金偉鋒,等. 基于正交設計和BP神經網絡-遺傳算法多指標綜合優化茶葉提取工藝[J]. 中國現代應用藥學, 2019, 036(010):1223-1228.
  • 9. 黃淵 岳世陽 熊善柏 等. 2種天然抗氧化劑與鰱魚肌球蛋白的相互作用[J]. 食品科學 2019 40(04):24-30.
  • 10. 陳紅霞, 李灝, 呂杰,等. 普洱茶渥堆發酵中活性成分測定及其相關性分析[J]. 北京化工大學學報(自然科學版), 2013, 40(005):84-87.
  • 11. 張天曉, 王祥榮. 真絲織物上茶多酚的高效液相色譜法檢測[J]. 現代絲綢科學與技術, 2020(2):4-7.
  • 12. 王舒叆,王子元,張敏.不同抑菌劑對青稞鮮濕面中蠟樣芽孢桿菌的抑制作用[J].食品科學,2020,41(13):206-211.
  • 13. 阮鳴. HPLC法同時測定六安瓜片中七種活性成分的含量[J]. 南京曉莊學院學報 2016(6):37-42.
  • 14. 黃貝, 李龍寶, 吳信潔,等. 油茶花青素還原酶基因克隆和體外功能研究[J]. 茶業通報, 2018, 040(002):71-76.
  • 15. 郭穎, 黃峻榕, 陳琦,等. 茶葉中兒茶素類測定方法的優化[J]. 食品科學, 2016, 37(06):137-141.
  • 16. 胡立文, 周曉晴, 張彬,等. 茶葉籽油中兒茶素類和咖啡因含量測定[J]. 南昌大學學報(理科版), 2018, 42(002):134-138,146.
  • 17. 喬小燕, 李波, 何梓卿,等. 黃化英紅九號紅茶體外抗氧化活性分析[J]. 農產品質量與安全, 2018, 000(005):85-90.
  • 18. 王婷婷 蔡自建 蒲婉欣 等. 四川綠茶感官品質與主要滋味貢獻成分分析[J]. 食品研究與開發 2018 39(24):162-167.
  • 19. 喬小燕, 黃秀新, 黃國資,等. "二炒"溫度對傳統客家炒青綠茶品質特征的影響[J]. 廣東農業科學, 2015, 042(001):96-99.
  • 20. 梅雙, 喬小燕, 陳維,等. 半連續化生產線和傳統單機加工客家炒青綠茶主要品質成分比較分析[J]. 廣東農業科學, 2019(11).
  • 21. 周曉晴, 胡立文, 羅琦,等. 茶葉籽油中茶多酚和兒茶素的測定[J]. 食品工業科技, 2019.
  • 22. 魏琳,盧鳳美,邵宛芳,袁唯.酸茶發酵過程中感官品質及主要成分變化分析[J].食品研究與開發,2019,40(14):69-74.
  • 23. 喬小燕, 李崇興, 姜曉輝,等. 不同等級CTC紅碎茶生化成分分析[J]. 食品工業科技, 2018, 039(010):83-89.
  • 24. 李波, 黃華林, 陳欣,等. 不同季節黃化英紅九號紅茶品質比較分析[J]. 山東農業科學, 2019.
  • 25. 歐惠算,張靈枝,王維生.阿姆斯特丹散囊菌對六堡茶品質成分的影響研究[J].中國茶葉加工,2019(02):45-50.
  • 26. 蔡爽, 阮成江, 杜維, et al. 沙棘葉片,果肉和種子中黃酮類成分的差異[J]. 植物資源與環境學報, 2019(4).
  • 27. 杜歡歡, 蔡艷妮, 江海,等. 超高效液相串聯質譜同時測定茶葉中的8種有效物質[J]. 陜西理工大學學報(自然科學版), 2017(33):74-80.
  • 28. 喬小燕, 黃華林, 李波,等. 廣東客家茶樹種質資源兒茶素特性分析[J]. 江西農業學報, 2019, v.31(01):30-33.
  • 29. 喬小燕, 黃國資, 王秋霜,等. 連續化生產線加工過程中客家炒青綠茶主要品質成分的化[J]. 廣東農業科學, 2014, 041(024):91-94.
  • 30. 萎凋方式對黃化英紅九號紅茶品質的影響
  • 31. 穆青 陳亞淑 謝筆鈞 楊季芳 陳吉剛 孫智達.北極海洋紅球菌B7740(Rhodococcus sp.)產類胡蘿卜素和類異戊二烯醌的抗氧化、抗增殖活性[J].食品科學 2018 39(11):159-164.
  • 32. 喬小燕, 陳維, 馬成英,等. 不同倉儲地康磚茶生化成分比較分析[J]. 廣東茶業, 2019(5):7-10.
  • 33. 黃華林, 李波, 陳海強,等. 不同萎凋時間英紅九號和黃化英紅九號紅茶品質比較[J]. 山西農業科學, 2019, 047(010):1742-1745.
  • 34. 王瑋, 張紀偉, 趙一帆,等. 瀾滄江流域部分茶區古茶樹資源生化成分多樣性的分析[J]. 分子植物育種, 2020(2).
  • 35. 馬麗娜. 基于QSPR和分子動力學模擬的中藥成分腸吸收預測方法研究[D].北京中醫藥大學,2020.
  • 36. 喬小燕,操君喜,車勁,陳棟,劉仲華.基于滋味和香氣成分結合化學計量法鑒別不同貯藏年份的康磚茶[J].現代食品科技,2020,36(09):260-269+299.
  • 37. 夏興莉,廖界仁,任太鈺,馬媛春,王玉花,房婉萍,朱旭君.低溫處理對茶樹葉片中γ-氨基丁酸和其他活性成分含量的影響[J].植物資源與環境學報,2020,29(05):75-77.
  • 38. 薛慶,童梁成,楊智偉,汪劍齡,趙磊,周勝,彭賽,李穎.表沒食子兒茶素沒食子酸酯可減輕大鼠骨骼肌缺血再灌注損傷[J].中國組織工程研究,2021,25(26):4145-4149.
  • 39. 劉行海,徐策,買文麗,鄭倩,劉華,劉紅.表沒食子兒茶素沒食子酸酯對2型糖尿病大鼠認知功能的影響及其機制研究[J].川北醫學院學報,2021,36(01):14-16.
  • 40. 姜麗娜,李紀元,范正琪,童冉,莫潤宏,李志輝,蔣昌杰.金花茶組植物花朵內多酚組分含量分析[J].林業科學研究,2020,33(04):117-126.
  • 41. 張恒,鄭俏然,何靖柳,韋婷,劉翔,章斌.藏茶玫瑰烏梅無糖復合飲料研制及功能性成分分析與抗氧化研究[J].食品科技,2021,46(01):46-53+61.
  • 42. Li, Wenfeng, Kun Zhang, and Qiang Zhao. "Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice." International journal of food sciences and nutrition 70.3 (2019): 311-322.https://doi.org/10.1080
  • 43. Chen, Yinxia, and Meihu Ma. "Foam and conformational changes of egg white as affected by ultrasonic pretreatment and phenolic binding at neutral pH." Food Hydrocolloids 102 (2020): 105568.https://doi.org/10.1016/j.foodhyd.2019.105568
  • 44. Yang, Rui, et al. "Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro." RSC advances 6.42 (2016): 35267-35279.https://doi.org/10.1039/C6RA04058F
  • 45. Chuang Zhu, Yan Xu, Zeng-Hui Liu, Xiao-Chun Wan, Da-Xiang Li, Ling-Ling Tai, The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice, Biomedicine & Pharmacotherapy, Volume 97, 2018, Pages 168-173, ISSN 0753-3322, https://do
  • 46. Jin, P., Li, M., Xu, G., Zhang, K., Zheng, L., & Zhao, J. (2015). Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Corrigendum in /10.3892/etm.2021.9725. Experi
  • 47. Zhang, Xing, Hui He, and Tao Hou. "Molecular mechanisms of selenium-biofortified soybean protein and polyphenol conjugates in protecting mouse skin damaged by UV-B." Food & function 11.4 (2020): 3563-3573.DOI: 10.1016/j.foodchem.2021.129888
  • 48. Chang, Yifan, et al. "Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate." International Journal of Biological Macromolecules 159 (2020): 373-382.https://doi.org/10
  • 49. Jia, Longgang, et al. "General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein." ACS Applied Materials & Interfaces 12.28 (2020): 31182-31194.https://doi.org/10.1021/acsami.
  • 50. Zou, Mingming, et al. "Evaluation of antimicrobial and antibiofilm properties of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves against Staphylococcus epidermidis." Food science & nutrition 8.1 (2020): 139-149.https://doi.org/
  • 51. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418
  • 52. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418
  • 53. Zhu, Tian-Tian, et al. "Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion." European journal of pharmacology 809 (2017): 42-51.https://doi.org/10.1016/j.ejphar.2017.0
  • 54. Jin, Pan, et al. "Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study." Cell & Tissue Research 356.2 (2014).
  • 55. Huang, Haojia, et al. "Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro." Experimental and therapeutic medicine 9.1 (2015): 213-218. https://doi.org/10.3892/etm.2014.2057
  • 56. Chen, Weijun, et al. "Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity." Journal of food science 84.1 (2019): 111-120.https://doi.org/10.1111/1750-3841.14405
  • 57. Zhang, Ying, et al. "Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II." Fitoterapia 92 (2014): 61-71.https://doi.org/10.1016/j.fitote.2013.10.001
  • 58. Ge, Zhenzhen, et al. "Comparison of the inhibition on cellular 22-NBD-cholesterol accumulation and transportation of monomeric catechins and their corresponding A-type dimers in Caco-2 cell monolayers." Journal of Functional Foods 27 (2016): 343-351.https:
  • 59. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039
  • 60. Hua, Jinjie, et al. "Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation."?LWT?139 (2021): 110291.https://doi.org/10.1016/j.lwt.2020.110291
  • 61. Liao, Yinyin, et al. "Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves." Journal of agricultural and food chemistry 67.24 (2019): 6716-6724.https://doi.org/10.1021/acs.j
  • 62. Liu, Shuyuan, et al. "In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea."?BMC complementary and alternative medicine?16.1 (2016): 1-8.
  • 63. Pei Pu, Xin Zheng, Linna Jiao, Lang Chen, Han Yang, Yonghong Zhang, Guizhao Liang, Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study, Food Chemistry, Volume 339, 2021, 128106
  • 64. Yu, Penghui, et al. "Distinct variation in taste quality of Congou black tea during a single spring season." Food science & nutrition 8.4 (2020): 1848-1856.https://doi.org/10.1002/fsn3.1467
  • 65. Xiang, X., Xiang, Y., Jin, S., Wang, Z., Xu, Y., Su, C., Shi, Q., Chen, C., Yu, Q. and Song, C. (2020), The hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced diabetic mice and their active components characterized by
  • 66. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039
  • 67. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
  • 68. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
  • 69. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
輸入產品批號:

本計算器可幫助您計算出特定溶液中溶質的質量、溶液濃度和體積之間的關系,公式為:


質量 (mg) = 濃度 (mM) x 體積 (mL) x 分子量 (g/mol)


  • =
    *
    *


源葉所有產品僅用作科學研究,銷售產品行為均適用于我司網上所列通用銷售條款。
三级理论视频